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Abstract-The fundamental solution for the theory of doubly curved shallow shells involving
shear deformation is obtained by means of Hllrmandcr's operator and plane-wave decomposition
methods. This solution has many important applications in the theoretical and numerical analyses
for the shells. "'kthods of evaluating the fundamental solution obtained are also discussed in this
paper. and numerical results arc presented for the case of a concentrated normal force acting on
intinite shells having positive. zero or negative Gaussian curvature.

INTRODUCTION

As is well known. fundamental solutions (or singular solutions) have many applications in
the studies of mechanical problems. For example, they c.tn be used to analyse the stress
and displacement distributions in the neighborhood of the singular point which a con­
centrated for«.:e is applied to, and they can also be chosen as the kernels of the boundary
integral equations in the Boundary Element Method which is widely used in engim:ering.
Therefore, it is essential to lind the fundamental solutions for dilferent kinds of mechanical
problems. espe«.:i'llly for shell structurcs. For shallow thin shells with an urbitrary quadratic
middle surl~l\;e. the fundamental solutions have been obtained .tnd discussed in detail
(Fliigge and Elling, 1972; lahanshahi. 1964; Matsui and Matsuoka, 1975; Sanders, 1970;
Simmonds and Bradley, 1976). However, investigations of shallow shells involving shear
deformation are comparatively few bec,lUse of the complexity of the governing equations.
In the present paper, this kind of shell is investigated and the corresponding fundamental
solutions an.: derived. These results are quite important for studies of shallow shells con­
sidering shear deformation.

In order to simplify the governing equations of this kind ofshallow shell, Hormander's
operator method is used and a tenth order partial differential equation is obtained. Then,
by using of plane-wave decomposition method, the problem of finding the fundamental
solution of the partial ditl'crential equation can be further reduced to solving an ordinary
differential equation. Therefore, the fundamental solution of an arbitrary doubly curved
shallow shell involving shear deformation can be obtained in this way.

In this paper. the computational methods for the fundamental solutions obtained arc
also discussed in detail and numerical results are presented for the case of a concentrated
normal force acting on infinite shells having positive. zero or negative Gaussi.tn curvature.

DECOMPOSITION OF BASIC EQUATIONS

Consider a shallow shell with a quadratic middle surface given by

(I)

where k I and k~ are principal curvatures of the shell in the x and y directions respectively.
Therefore, according to the simplifications of shallow shell theory, the basic equations of
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the shallow shells involving shear deformation can be expressed as follows (Sih. 1977):

Equilibrium equations
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Stress-displacement relations
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where II, /', II', 1/1, and 1/1 .. are live independent displacements, {I" {I,., P:, 111, and 111 .. are
generalized distrihutive loads applied in dilli:rent directions of the shell, B, C and Dare
tension, shear and hending stitl"ness respectively, and v is Poisson's ratio,

Suhstituting (3) into (2), we can ohtain the equilibrium equations expressed in dis­
placements

[ILJlU) = :~}

[IU} = [U,I',II',I/I"I/I ..1I, {~} = [p"p,.,P:.1II,.1II ..l'

and [IL) is a symmetrical ditrerenti.t1 opcmtor matrix of order 5 x 5, Its elements arc

B , , 1
L IL =i[(I+v)Di+(I-v)V-). L 12 = 2(1+v)BD I D1•

L,) = B(k, +vk 2)D!, LI~ = LIS = O.

(-l)

(5)

D , • (6)L ss = ., [(I+~')D~+(I-v)V-l-C

where D" D2 and V2 arc partial dill"erential operators given by

V
D, = ~--,

LX

iJ
D, - ----

- - (11"
(7)
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Equations (oJ) can be decomposed by Hormander"s operator method (Hormander, 1963).
Define the following displacement functions

which satisfy the relation

{QJ} = [iF){<1>"'}

where differential operator matrix [IF) can be obtained by the following method. Let

[l][1F) = [~]2'

(8)

(9)

( 10)

where [~] is a unit matrix of order 5 x 5. and Y is a differential operator given by the
determinant of the operator matrix [Q.]. From (10), we have

(II)

Therefore. [IF] and !f' can be determined from the known operator matrix [l]. and are listed
at the end of this section. We notice that coupled equations (4) have now been reduced to
a set of uncoupled equations for five displacement functions

!f'«(),) =1',/D (j = I. 2, ... ,5).

Let <11(x.y) be the fundamental solution of the dilTerential operator!f/, i.e.

2'«1» = J(x, .1')

( 12)

( (3)

where ,)(.\'..1') is the Dirac I)-function. Then the particular solutions to the set of differential
equations (12) for arbitrary loading can be expressed in the form

<" (. ,) - ff"'( ._. .- )Pi d· d . (. - I" 5)I', .t,} - 'I'.t ~,> tf D t, 'I } - ,-•...•. (14)

Once <(),(x,y) is known. the displacements can be determined from (9) in terms of the
dispbcement functions, and the generalized stress resultants can be obtained from relation
(3) :

where

{lr} = [G]{QJ} = [G][IF]{<1>"'} = [IR]{<()"'}

{lr} = [N" N,.• N.. , Q,. Q., At" M,.• M,y(

( (5)

( 16)

and the clements of the dilTerential operator matrix [IR] are listed in the Appendix. The
representations of the differential operator !fl and the symmetric operator matrix [IF] can
be derived according to the methods discussed before. and are listed below:

( 17)
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HJNDAMENTAI. SOLUTION

Now the prohlem of finding the fundamental solution of an arbitrary quadratic mid­
surl~lce shallow shell involving shear deformation can he reduced to solving eqn (13)

(:W)

This is a tenth order p.trtial dilferential equation, and can be solved by the plane-wave
decomposition method (Gerl~llld and Shilov, 1966).

Firstly. by exp,lllding the right-hand side of cqn (20) into plane-waves in two-dimen­
sion.t1 space, we obtain the equation

whae (WI. w~) arc the coordinates of u point on the unit circle, i.e.

WI = cos 0, W1 = sin O.

Let

Consider the equation

(21 )

(23)
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(f a solution q,{p) which depends only on the p in eqn (24) could be obtained, the solution
ofeqn (21) can be written in the form

(25)

Equation (25) is called the plane-wave representation of the fundamental solution. There­
fore, the partial differential operators can be written as

c d
~=wl-d •
I.IX P

(26)

Applying these relations to the left-hand side of eqn (24), we can obtain the ordinary
differential equation as follows:

(27)

where

(28)

(29)

Now the problem of solving eqn (20) is reduced to solving eqn (27). After four integra­
tions of eqn (27), we have

(
d

2 ,)(d4 d
2

) I,
dp~ -(Ii d?" - 1I2 dp~ +lIJ (p(p) = 8-;2 p. In Illl.

The particular solution ofeqn (29) can be obt'lined by the method ofvariation ofparameters
(Ye and Xu. 1978)

where

'j =a,
'2 =(;;;14+02/4)1/2 +i(;;;I4-a2/4) 1/2

fJ :=: (JaJ/4+02/4) 1/2 - i(;;;I4-02/4)lf2 (31)

(32)
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To simplify eqn (30). we integrate by parts three times for each integral of (32) and substitute
into eqn (30). We obtain the expression

(33)

where

(34)

Notice that '1 is a real number. but'2 and rJ are a couple of conjugate complex variables.
Let

(35)

From these. eqn (31) can be representt.'<.l as

Now define

{
I j = 1,2

sgn (rl ) = _ 1 i = 3.

Then the integrals in eqn (33) can be expressed as (Abramowitz and Stegun. 1966)

l'
I" J ~;:_~ dlT = - £, (-riP)+ ~i (I +sgn (p») sgn (rj) (j = 1. 2. 3)

when.: £.(;) is called the Exponential Integral. and its series representation is

[
, (-I r:rrJ

£1(:) = - I'+ln =+ 2:---,--- (larg:1 < rc)
./. Int!.

(36)

(37)

(38)

(39)

"..here i = 0.51721 is Euler's const,mt. Noting the range of the argument of the complex
variable in the Exponential integral. we can obtain

where

~l = 5.. (12 = (13 = arc tan I~J

(40)

(41 )
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Therefore. from (38)-(41). we have (Lu. 1989)

637

flO e-'," 111 e,,,l [ (1t) ]
er

,1l L 7 dO'- e-',P -'Xi q-do- = -2 y+lnlrjpl+i 2" -':1.j sgn (rj )

x f (r/p)2~ +2 t (rjp)~ l{J(2m+l) U= 1.2.3) (42)
m=O (2m). m"O (2m).

where

m 1
l{J(m+1) = L ' l{J(I)=O,

,=1 S

Let pj = «1t/2)-':1.j ) sgn (rj ); it can be found from (41) that

(43)

(44)

Substituting (42)-(44) into (33) and deleting the polynomial terms in p ofdegree not greater
than 2. we obtain

and from (25), we have

r~
<l>(x,y) = Jo t/J(p) dO.

(45)

(46)

Thus, the fundamental solution of eqn (20) can be obtained from (45) and (46), in which
definite integral (46) should generally be solved by numerical integration.

If a set of generalized unit concentrated forces is applied to a point of the shallow shell
in different directions. the corresponding fundamental solutions are those according to
eqn (14)

I r2~ r2~
<l>j(x.y) = <l>(x.y)/D = D Jo t/J(p) dO = Jo t/Jj(p) dO (j = 1•... ,5) (47)

where 4JJ(p) =4J(p)/D. Therefore, the displacements and stresses in the shell caused by the
set of the unit concentrated forces can be expressed according to (9) and (15)

where

i'~ i'~ i'~{IU} =[f][<l>*} = [IF] {4J*} dO = [t}{t/J*} dO = {OJ dO
fl 0 0

{T} = [1RJ{<l>*} = r~ [AJ{t/J*} dO =r~ [1] dO

(48)

(49)

(50)

and [f], [A] are differential operator matrices composed by differential operators dlc/dplc
(k = 1.2•...• 9). The elements of the matrices can be obtained simply by replacing the

s~s 28: 5-H
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dk/dxk• dk/dl of corresponding elements in matrices [IF]. [R] by w~(dk/dpk). w~(dk/dpk). and
are given in the Appendix.

COMPUTATIONAL METHOD FOR THE FUNDAMENTAL SOLUTIONS

Representationsfor deriratires of¢(p)
As discussed before. there are derivatives of ¢(p) for variable p up to ninth order in

matrices [iF] and [IR]. Substituting (38) into (33), ¢(p) can be expressed in another form

¢(p) = -!{p~ In Ipl t rlAi +(2In Ipl+3) t Ai + ±A/Xi} (51)
i=1 i~1 i=1

where

x,(r;p) = e',I' £dr,p)+e-"I' £I{ -riP)

-irr[ch (r;p)-sh (r;p) sgn (p)] sgn(r;) (j= 1.2.3). (52)

According to Abramowitz and Stegum (1966). we have

Thus, we obtain

where

dX,{r;p) 2-_._- = r,).,{r,p)- (j = 1.2,3)
dp fI

(54)

)_, (r,p) = e',I' £, (r; p) -e .'," £1 ( - riP) - irr[sh (rip) -ch (riP) sgn (p)] sgn (ri ) (j = 1.2,3)
(55)

and the following relations are also true

From eqn (34), we can obtain the relations

(56)

J, I I
" r)- A)" = -, -,--,--,.
L.- 4rr- r"r,ri~ , , _ J

J J

I r/A, = L r/Ai = O.
i= 1 i= I

J I
L r/Aj = 4----Z •

i= I 7t

(57)

Now. from {51 )-(57). we can obtain the derivatives of ¢(p)

(58)
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Therefore. the problems of calculating the derivative values of the fundamental solutions
are reduced to evaluating the values of Xi and Aj (j = I. 2. 3).

Computation o/Xi and 1;
Because r2 and r3. A2 and AJ are complex conjugate quantities. X2 and X3. A2 and AJ

are also complex conjugate functions from (52) and (55). Therefore, only X.. )." X2 and ).2

should be calculated in the numerical computations.
As rl is a positive real number. according to the properties of the exponential integral

and (52) and (55). we have

{
er

,!, El(rlP)-e-r,P Ei(r,P) P > 0

XI= -er'PEi(lrIPI)+e-r,PEI(lrIPl) p<O

{

er,P EI (rl p)+e-r,p Ei(rl p) P > 0

AI = _er
,!' Ei(lr, pl)-e-r,p E I (Irl pi) p < 0

(59)

(60)

where exponential integrals EI(x) and Ei(x) can be evaluated using the approximate
formulas of Cody and Thacher (1968. 1969).

Because r2 is a complex variable. the numerical computations of the complex functions
X2 and ).2 are comparatively difficult. By using the series expansions ofexponential integrals
and hyperbolic functions. eqns (52) and (55) can be expressed as

(61)

(62)

If Ir2pl is small, the convergence rate is fast by using the above equations for the evaluations
of X2 and ;'2. but the computing time will increase when Ir2pl is large. In this case. we can
usc the following expressions:

{

erlP EI(r2P)+e-r2P E 1(-r2P)-ine- r2P P > 0

X2 = erlP EI(r2P)+e-r2/' E1(-r2P)+inerIP P < 0 (63)

(64)

where erll
' E 1(r2P) and e- rlP E I(- r2P) can be computed by using the following approximate

formulas (Abramowitz and Stegum. 1966):

when x > 10 or y > 10 (z = x+iy)

'E ( ) 0.711093 0.278518 0.010389
e' 1 z = z+0.415775 + z+2.29428 + _-"+--=-6.'::"29::-::oo'"="

when lzl > 15 (x i- 10, y i- 10)

. I{ I 1'2 1'2'3 }e'E1(=)=- 1--+-,---+",_ .. __ .,.3., ..... ...

when 4 ~ 1=1 ~ 15 (x i- 10. Y i- 10)

e:E
I
(=) = (_I _1__12-2-2-2-...).

=+ 1+ =+ 1+ =+ 1+ =+

(65)

(66)

(67)
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When 1:1 < 4. (61) and (62) can be used to evaluate X2 and ;'2' Once Xl. X2.).1 and).2 have
been obtained. the derivatives of 4>(p) can be easily calculated by eqn (58). For example.

d::A:+ IA.
'I' _ l[A 2.1:+1' 2R (A 2k+I')]dp::A:+ 1 - - 2 / \1" ...·1 + e /\2'2 ...·2

the other derivatives of 4>(p) can be obtained in a similar way.

Computations of the fundamental solutions
To calculate the fundamental solutions, the following definite integrals are encountered ;

Ck+I<IJ(X,y) r2~ .I: • I d.l:+ I4>(p)
c.~ 01 = Jo cos 9 Sin 9 dpk+1 dO (k, 1= O. 1. 2, ...). (68)

(69)

This can be treated by the Gaussian numerical integration method. The interval (0.2x) is
divided into sub-regions according to the given precision, and each sub-region is interpolated
by five Gaussian integral points. Numerical results show that this treatment is suitable.

When Gaussian curvatures of the shells are negative. it can be seen from (28) and (31)
that '2 will be zero for some values of e. In these cases, a singularity exists in the integrals.
To avoid this situation. the values of 0 in which '2 becomes zero should be determined in
advance.

To do this. supposing that the values to make '2 or a2 zero are (Jo. we have from (28)

so

This gives

{

arctan Jlk21ktl

00 == . x ±arctan Jlk 21k tI .
2x-arctan Jlk 21k l

Therefore, in the case of k lk2 ~ 0, the region (0, 2n:) can be divided into four sub-regions,
and numerical calculations are carried out in these sub-regions. The problems ofsingularity
can be avoided in this way. The calculation practice shows that this treatment is suitable.

NUMERICAL RESULTS

To check the fundamental solutions obtained and treatment programme discussed
before. we selected the case of a concentrated normal force acting on infinite shallow shells
with variable t =k21k l and evaluated the distributions of generalized internal forces and
displacements of the shell along x == 0 and y = 0 respectively. These results are presented
graphically in Figs 1-14, in which the horizontal coordinate is the dimensionless value

P (p _[JI2(I-V2)k1]lf2 ~)
, r- h y-"+Y •
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and the vertical one represents dimensionless generalized forces and displacements
respectively.

As - 1 ~ r ~ I, the value y = 0 represents the line ofmaximum curvature, while x =0
represents the minimum one. Since the displacements and the forces have singularity of
order In r at the point where the concentrated force is applied, the numerical calculations
begin from fJr =0.01.

From Figs 1-12, we can see that the trends of the internal forces and the displacements
due to fJr and r are similar to those obtained for thin shell structures (Matsui and Matsuoka,
1978). This can be explained by the fact that the theory of the shallow shell involving shear
deformation would tend to thin shell theory when the thickness of the shell is reduced
gradually. Figures 13 and 14 show the variation of "'x along y = 0 and"' .. along x = 0 with
the variables fJr and r. which cannot be obtained from thin shell theory. It can be seen from
the figures that "'.• and "'.. are influenced strongly by the shell geometry, especially for
cylindrical shells. .

Fig. l. Membr.tne stress resultant N. (y = O. t = k,lk,).

-0.4

...
l;

£;! -0.1

'0

Sr
0.1

Fig. 2. Membrane stress resultant N, (x =O. t =kJk,).

Z -0.3

~
.; • 0.2
.....
...-

0.1

-- Tension pOsitive

- - - Comprnsion pOSI tlve

10

Fig. 3. Membrane stress resultant N. (y =0 O. t =0 k,lk,).
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-0.4

Z -0.3

1:J.
Q.
--..

- 0.1

-- TenSion I)OS'ti ....

--- CompressIOn pos,t,ve

I I3r
Fig. 4. Membram: stress resultant N,_ (x = O. r = Ii ~ Ii,).
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-0.'5

'0

I3r

Fig. 5. Transverse shear force Q, ( )' = O. r = k ,Ik d.

- z,o

, '0.0

" -0.5

.'3-

Fig. 6. Transverse shear force Q,_ (x = O. r = /.dli ,).
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- 0,2

-0.1
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Q. 0.' ""- I3r
--.. " 0.0
~

, >0,5N 0.2

, '-1.0
0.3

" 0.5
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Fig. 7. Stress couple M, (y = O. r = k~/k,),
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Q.'
2
-:. 0 ••........
It 0.3
N

Q."

0.3

0.6

643

Fig. 8. Stress couple M, (.\" == O. t == k:lk ,). fig. 9. Stress couple M,. (y .. O. t .. k:!k,).
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~ o.
03

o.

-4

-.
! 0

Ii.
....... •

10 Q:I,
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N

6

$

'0I.
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Fig. 10. Stress couple M. (x. 0, t ... "'/",).

e

'. -
Fig. 12. Normal deflection W (x ... O. t .. k 2!k ,).

Fig. II. Nornml dclkoctiun W (.l' "" 0, r .. k ~/k I)'

1.2

ot------.;;;:oo-,=---------:"o:--
{3r

Fig. 13. Rotation.p, (y .. O. t .. kl!k,).

~ o~.

!- 0.2
It

~ 0 ~----..:::::::i:::=::=O------~of-
{3r

Fig. 14. Rotation rjI, (.\" ... G. t ... "uk,).

CONCLUSIONS

In this paper. the governing equations of the shallow shell involving shear deformation
are decoupled and a set ofequations for displacement functions are derived. Representations
of this form are very useful in the study of this kind of shells. The fundamental solutions
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of the shells are then obtained and the corresponding computational methods are discussed
in detail.

The boundary element analyses for the shallow shell involving shear deformation by
using the fundamental solution obtained have been completed (Lu, 1989) and will be given
in a subsequent paper.
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AI)PE:\DIX

The elements of differential operator matrix (HI arc

R ,j = B(F"D,+vF!,D!+(k,+vk!)F.I,). R!, = B(\·FI,DI+F:,D:+(k:+vk,)F"I.

R'I = \(1-v)B(F"D!+F!ID,J. R., = C[FJJD , +F.,J. R., = C(f'J,D! + F'IJ.

R. j = D(F.1D, + vF"D 2J. R" = D(vF.,D , + F.,D:]. R" = !( 1- v)D[F.,D! +F'iD,J (j = I, 2..... 5)

where 0 , and D! are given by (7). and F" by (18).

The elements of operator matrices [it) and [~) are defined as

,d' k,
D'=d-" r=k-'I' "

,
k. = w; ... ---(1)',. . I-v .

k J = k;[(I+r+2vr)wi+2(1 +v)wn k. = k;[(I ... r+2vr)w~+2(1+v)w~r'J.

k, = k,[(l +V!)wl+(2+v-r)w,w~J, k. = k,[(r+v)w!+«2+v)r-l)w;w!).

Therefore.
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.. lk 8(" k· 'D'}r .. "" D[ .Dp- aiw; +az ,)Dp+aiaz p'

where al' az are given by (28). and (1)1 and Wz are given by (22).
The components of operator matrix [IR} are

R'f "" B[w.F,jDp+VW1Fl,Dp+kl(1 +vt)FJ,}.

Rz, "" B[vw,F'jDp+wzFuDp+k.(r+v)Fl'}'

R'J"" !O-v)B[w1F.,+w,Fz,}Dp• R.; "" C[w,F"Dp+F.1}.

R'1 "" C[wzF."Dp+F,J }. R., "" D[w.f'.,+vwzf'sf}Dp.

RT1 "" D[vw,F.,+w1F,,}Dp• R81 "" j(I-v)D[w1F.,+W.f',I}Dp. (j"" 1.2•...• 5)
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