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Abstract—The fundamental solution for the theory of doubly curved shallow shells involving
shear deformation is obtained by means of Hérmander's operator and plune-wave decomposition
methods. This solution has many important applications in the theoretical and numerical analyses
for the shells. Methods of evaluating the fundamental solution obtained are also discussed in this
paper. and numerical results are presented for the case of a concentrated normal force acting on
infinite shells having positive, zero or negative Gaussian curvature.

INTRODUCTION

As is well known, fundamental solutions (or singular solutions) have many applications in
the studies of mechanical problems. For example, they can be used to analyse the stress
and displacement distributions in the neighborhood of the singular point which a con-
centrated foree is applied to, and they can also be chosen as the kernels of the boundary
integral equations in the Boundary Element Method which is widely used in enginecering.
Therefore, it is essential to find the fundamental solutions for different kinds of mechanical
problems, especially for shell structures. For shallow thin shells with an arbitrary quadratic
middle surface, the fundamental solutions have been obtained and discussed in detail
(Fligge and Elling, 1972 Jahanshahi, 1964 ; Matsui and Matsuoka, 1978 ; Sanders, 1970,
Simmonds and Bradley, 1976). However, investigations of shallow shells involving sheur
deformation are comparatively few because of the complexity of the governing equations.
In the present paper, this kind of shell is investigated and the corresponding fundamental
solutions are derived. These results are quite important for studies of shallow shells con-
sidering shear deformation.

In order to simplify the governing equations of this kind of shallow shell, Hérmander's
operator method is used and a tenth order partial differential equation is obtained. Then,
by using of planc-wave decomposition method, the problem of finding the funduamental
solution of the partial differential equation can be further reduced to solving an ordinary
differential equation. Therefore, the fundamental solution of an arbitrary doubly curved
shallow shell involving shear deformation can be obtained in this way.

In this paper. the computational methods for the fundamental solutions obtained are
also discussed in detail and numerical results are presented for the case of a concentrated
normal force acting on infinite shells having positive, zero or negative Gaussian curvature.,

DECOMPOSITION OF BASIC EQUATIONS
Consider a shallow shell with a quadratic middle surface given by
s= =ik, x +kop?) 1))

where k) and &, are principal curvatures of the shell in the x and y directions respectively.
Therefore, according to the simplifications of shallow shell theory, the basic equations of
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the shallow shells involving shear deformation can be expressed as follows (Sih. 1977):

Equilibrium equations
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Stress-displacement relations
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where w, voow, @, and ¢, are five independent displacements, p,, p., p.. m, and m, arc
generalized distributive loads applied in different directions of the shell, 8, C and D are
tension, shear and bending stiffness respectively, and v is Poisson’s ratio.

Substituting (3) into (2), we can obtain the cquilibrium cguations expressed in dis-
placcments
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and [L] is a symmetrical differential operator matrix of order 5 x 5. [ts elements are
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where D,. D, and V* are partial differential operators given by
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Equations (4) can be decomposed by Hormander's operator method (Hormander, 1963).
Define the following displacement functions

{‘D*} = [¢1~¢:~¢3-¢4-®5]T (8)
which satisfy the relation

(U} = [Fl{o*} ®

where differential operator matrix [F] can be obtained by the following method. Let
(L[FE =2 (10)

where [1] is a unit matrix of order 5x §, and & is a differential operator given by the
determinant of the operator matrix [L]. From (10). we have

F=['2. (11)
Therefore, [F] and .2’ can be determined from the known operator matrix [L]. and are listed
at the end of this section. We notice that coupled equations (4) have now been reduced to
a set of uncoupled equations for five displacement functions

L2W)y=p/D (j=1.2,...9). (12)

Let (v, y) be the fundamental solution of the differential operator £, i.c.
Z(D) = (v, p) (13)

where d(x, p) is the Dirac d-function. Then the particular solutions to the set of differential
equations (12) for arbitrary loading can be expressed in the form

)
0, ey = | |o0=Cy—mPdidy (i=1.2....5). (14)
D

Once @ (x, ) is known, the displacements can be determined from (9) in terms of the
displacement functions, and the generalized stress resultants can be obtained from relation
(3):

{T} =[GI{U} = [G]IF]{®*} = [R]{®*} (15)

where

{T} = [lv."Nl" Nxv* Qv‘ Qy'A”nA'IrvM{v]r (16)

and the clements of the differential operator matrix [R] are listed in the Appendix. The
representations of the differential operator % and the symmetric operator matrix [F] can
be derived according to the methods discussed before, and are listed below :
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FUNDAMENTAL SOLUTION

Now the problem of finding the fundamental solution of an arbitrary quadratic mid-
surfuce shallow shell involving shear deformation can be reduced to selving eqn (13)

O S .
L(b) = [\7" ~(=v) V,;'I..;] L (x, ) = 8(x, v). (20)

This is a tenth order parual differential equation, and can be solved by the plane-wave
decomposition method (Gel'fand and Shilov, 1966).

Firstly, by cxpanding the right-hand side of eyn (20) into planc-waves in two-dimen-
sional space, we obtain the equation

{ 2 .
.(l)((ll) = — 4753 j ](!}p\“}"(“:}'i T d() (:‘}
L

where (w,, @,) are the coordinates of a point on the unit circle, i.c.

wy =cosl, w,=sinf. (22
Let
P =W x+w. (23)
Consider the equation
L) = — ¥~»:-[(1),x+w:y|": S Ipl . (24

4n ir’
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If a solution ¢(p) which depends only on the p in eqn (24) could be obtained, the solution
of eqn (21) can be written in the form

®(x,y) = L S, X +w:y) d = J; $(p) db. (25)

Equation (25) is called the plane-wave representation of the fundamental solution. There-
fore, the partial differential operators can be written as

L

a = Wy E;* a}' dp . (26)

Applying these relations to the left-hand side of eqn (24), we can obtain the ordinary
differential equation as follows:

Sl(,(}i“ 2)(31. dz — ! -2 27
3 \dp? aj & "‘a:a“;:‘ +a; | |P(p) = mmiﬂf n
where
2 C 12 . . s B C
a, = (T—"‘J 5) . ay =(kioi+ko})( -v')g, ay=ayp. (28)

Now the problem of solving eqn (20) is reduced to solving eqn (27). After four integra-
tions of eqn (27), we have

RN LY 2
ap’ a dv/)" “:d")’; +d; fb(ﬂ)-—grzﬂ’ n fpl. (29)

The particular solution of eqn (29) can be obtained by the method of variation of parameters
(Ye and Xu, 1978)

dlp)=u e uz e " Hus P fus e fus e duge Y (30)

where
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To simplify eqn (30). we integrate by parts three times for each integral of (32) and substitute
into eqn {30). We obtain the expression

®(p) = —~{p In |p| Zr A+Q2In lpl+3)Z/\

j=1

3 < e I
+ 2 A [e'f“ ;‘ da—e"f’"J‘ da]} 33)
j=1 o @ -x O

where
A ! A :
T AR =i =) T At -G
1
A3 == 5 B BN (34)

An ri(ri—ri)(ri~r3)

Notice that r, is a real number, but r, and r, are a couple of conjugate complex variables.
Let

o= (JaA+afd g = (Jajd—ay 4. (35)
From these, eqn (31) can be represented as
re=1,+iny, r;=1H—ig. (36)
Now define

j=12

i
sgn (’;):{__E i=3. (37
Then the integrals in eqn (33) can be expressed as (Abramowitz and Stegun, 1966)

}. Cl da = Er,p)— ZI(E —sgn (p)) sgn (r,)

o
f' e’ do= —E(—rp)+ = (l +sgn (p)) sgn(r;)) (j=12.3) (38)

where E,(2) is called the Exponential Integral, and its series representation is

Evz) = “["+ln 4+ 3 & }—-—} (farg =l < ) (9

!

el

where v = 0.51721 is Euler’s constant. Noting the range of the argument of the complex
variable in the Exponential Integral, we can obtain

T
arg (r,p) = — (a,-? isgn (p)) sgn(r) (=123 (40)
where
T It
0 =3, a:ma,=arelan;?-; (4
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Therefore, from (38)-(41), we have (Lu, 1989)

x e "’ ., ' er’a RE:
e do—e"* —do = 2| y+hnlrpl+i{ 5 —x; |sgn (1))
, @ x O 2

TR Y. .
xm;) (2m)! +2m§o 2m)! y@m+1) (=123) (42)

where
W =3 L (=0 @3)
s |

Let §; = ((r/2)—2;) sgn (r;); it can be found from (41) that

By =0, B,=arctan :’—?3
|

v By= -5 44

Substituting (42)-(44) into (33) and deleting the polynomial terms in p of degree not greater
than 2, we obtain

/p)2m+. .
d(p) = Z A Z. Qmizy el +if =y @m+3) (45)
and from (25), we have
D(x.y) = L $(p) do. (46)

Thus, the fundamental solution of eqn (20) can be obtained from (45) and (46), in which
definite integral (46) should generally be solved by numerical integration.

If a set of generalized unit concentrated forces is applied to a point of the shallow shell
in different directions, the corresponding fundamental solutions are those according to
eqn (14)

l 2 n
D, (x,y) =0, »)/D = D j; P(p)dl = L ¢(p)dd (j=1,...,5) 47

where ¢,(p) = ¢(p)/D. Therefore, the displacements and stresses in the shell caused by the
set of the unit concentrated forces can be expressed according to (9) and (15)

W =m = [ o= ["mwro- "o e
x h+'3
(T} = [RI{®*} = f [ {¢*} do = f (140 (49)
where
{¢*} =[¢h¢2"”s¢5]r (50)

and [F}, [R] are differential operator matrices composed by differential operators d*/dp*
{k=1.2,...,9). The elements of the matrices can be obtained simply by replacing the

SAS 28:5-4
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d*/dx*, d*/d)y* of corresponding elements in matrices [F], [R] by w*(d*/dp*), w%(d*/dp*). and
are given in the Appendix.

COMPUTATIONAL METHOD FOR THE FUNDAMENTAL SOLUTIONS

Representations for derivatives of ¢(p)
As difcussed before. there are derivatives of ¢(p) for variable p up to ninth order in
matrices [F] and [R]. Substituting (38) into (33), ¢(p) can be expressed in another form

3 3 3
P(p) = —%{pz Inlpl ) rfA+QInlpl+3) Y A+ Y /\,-x,} (51
j=1 i j=1

where

x,(r,p)=e’/"E,(r,p)+e”"'E|(—r,p)
—infch (r;p)—sh (r;p) sgn (p)) sgn(r;)) (j=1.2.3). (52)

According to Abramowitz and Stegum (1966), we have

" d-! —1)"(n—1)!
g:;[e:E.(:)] = o EE+ =D 2, (53)
Thus, we obtain
WD) _ s =2 =123 (54)
dp p

where

4(rp) =" E\(rip)—c " E\(~r,p)—in{sh (r;p)—ch (r;p) sgn (p)] sgn (r;) (= 1.2.3)

(55)
and the following relations are also true
di(r;
——'a(p'p) =rx(rnp) (= 123). (56)
From eqn (34), we can obtain the relations
3 1 l k) s 3 . 3 . 1 57
i = 3 3 3 A= A=0, A'='_—v
:L:l ¥ A/ 4n’ rfrsr_i /§‘| UELY /; UELY j; UEAY nz ( )
Now, from (51)-(57). we can obtain the derivatives of ¢(p)
d 3 , 3 .
“d'(b‘-: '—5 f[)(2 ln|p|+|)2r;/\,+ ZI\jrj/.,}‘
P J= j=1
dz(f) . 3 ) ) )
a—'z‘=“: p(2|n|p|+3)2r,/\,+21\,r,x, .
p J j=1
d2k+l ) 3 - dZ(k+l)¢ | 3 )
I | R+ i — = A, (k+1) .
dp*+T .i; Ajr A FPEC .:[.l T L¥
d’ 3 . 11
dp({:: —%_Zl/\j"q/-j*'a‘;g; (k=1.23). (38)
i=
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Therefore, the problems of calculating the derivative values of the fundamental solutions
are reduced to evaluating the valuesof y,and 4, (j = 1. 2, 3).

Computation of y; and J;

Because r, and r,, A; and A; are complex conjugate quantities, ¥, and 5, 4, and 4,
are also complex conjugate functions from (52) and (55). Therefore, only x,, 4,, x, and 4,
should be calculated in the numerical computations.

As r, is a positive real number, according to the properties of the exponential integral
and {52) and (55), we have

{e""E‘(r:p)-e“""Ei(rm) p>0 s

X0 = —e @ Eilr,ph +e~? Ey(Iripl) p <0 (59

. e E\(r p)+e " Ei(r, p) p>0

Ay = LN »H —r.p (60)
~e" Ei(lryp)—e " E\(Iripl) p<0

where exponential integrals E,(x) and Ei(x) can be evaluated using the approximate
formulas of Cody and Thacher (1968, 1969).

Because r, is a complex variable, the numerical computations of the complex functions
¥ and 1, are comparatively difficult. By using the series expansions of exponential integrals
and hyperbolic functions, eqns (52) and (55) can be expressed as

2% )™ [y +In i pl+ B, =y 2m+ 1) 6
mom ) (2 }'

(r p)Zm } .
-2 Zﬁ T L[y +in r,p| +if, — Y (2m)). @)

If |rapl is small, the convergence rate is fast by using the above equations for the evaluations
of x, and 4,, but the computing time will increase when |r,p} is large. In this case, we can
usc the following expressions:

e E(rp)te ™ Ef(—ryp)—ine” p>0
X2 = Ve E(ryp)+e™" E\(—rop)+ine’™ p<0 63)
; e Ei(ryp)—e P E\(—ryp)+ine™ p>0
1T\ E(rip)—e " Ef{—rp—ine? p<0 (64)

where e E|(r,p) and e ™" E,(—r,p) can be computed by using the following approximate
formulas (Abramowitz and Stegum, 1966):

whenx> [0ory> 10 (2 = x+iy)
0.711093 0.278518 0.010389

CE@) = 0415775 T 742.299%8 T 2162900 (63)
when |z| > 15 (x ¥ 10, y % 10)
éE,(z)‘é{l—%-r-%g-%;:}*-"'} (66)
when 4 < [z} € 15 (x % 10, y # 10)
o-(fhaAEA) e



640 P. Lu and M. Huang

When |z| < 4, (61) and (62) can be used to evaluate ¥, and 4,. Once x,. £z 4, and 4, have
been obtained. the derivatives of ¢(p) can be easily calculated by eqn (58). For example.

dlk+ l¢
T — AP 4 2Re (Ar¥ YAy
d:(t-»ué
qpTEEn = — A Uy 4 2Re (A3 D)) (h=1,2,3);

the other derivatives of ¢(p) can be obtained in a similar way.

Computations of the fundamental solutions
To calculate the fundamental solutions, the following definite integrals are encountered ;

ak*lq) , i ) k!
W%Z)zj; cos"Osm'Gg—J;%gf)—)dB k,{=0,1,2,...). (68)

This can be treated by the Gaussian numerical integration method. The interval (0,2n) is
divided into sub-regions according to the given precision, and each sub-region is interpolated
by five Gaussian integral points. Numerical results show that this treatment is suitable.

When Gaussian curvatures of the shells are negative, it can be seen from (28) and (31)
that r, will be zero for some values of 8. In these cases, a singularity exists in the integrals.
To avoid this situation, the values of 8 in which r; becomes zero should be determined in
advance.

To do this, supposing that the values to make r, or a, zero are {,, we have from (28)

k,sin® 0,4k, cos’ 0y =0

SO

This gives

arctan /1k,/k,|
0y = {ntarctan \/|k,/k,| - (69)
2n—arctan /lkJ/k,

Therefore, in the case of k,k, < 0, the region (0, 27) can be divided into four sub-regions,
and numerical calculations are carried out in these sub-regions. The problems of singularity
can be avoided in this way. The calculation practice shows that this treatment is suitable.

NUMERICAL RESULTS

To check the fundamental solutions obtained and treatment programme discussed
before, we selected the case of a concentrated normal force acting on infinite shallow shells
with variable t = k,/k, and evaluated the distributions of generalized internal forces and
displacements of the shell along x = 0 and y = 0 respectively. These results are presented
graphically in Figs 1-14, in which the horizontal coordinate is the dimensionless value

3 112
(o =[O0 ).
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and the vertical one represents dimensionless generalized forces and displacements
respectively.

As —1 € t < 1, the value y = 0 represents the line of maximum curvature, while x = 0
represents the minimum one. Since the displacements and the forces have singularity of
order In r at the point where the concentrated force is applied, the numerical calculations
begin from fr = 0.01.

From Figs 1-12, we can see that the trends of the interna! forces and the displacements
due to fr and t are similar to those obtained for thin shell structures (Matsui and Matsuoka,
1978). This can be explained by the fact that the theory of the shallow shell involving shear
deformation would tend to thin shell theory when the thickness of the shell is reduced
gradually. Figures 13 and 14 show the variation of ¢, along y = 0 and ¢, along x = 0 with
the variables fr and t, which cannot be obtained from thin shell theory. It can be seen from
the figures that ¢, and ¢, are influenced strongly by the shell geometry, especially for
cylindrical shells.

-0.4

O

Fig. 2. Membrane stress resultant N, (x = 0, t = k,/k ).

T30.0 e Tension positive
=== Comprassion positive

Fig. 3. Membrane stress resultant N, (v = 0, 1 = ky/k,).
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Fig. 4. Membrane stress resultant ¥, (x = 0, 1 = k., A ).
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Fig. 5. Transverse shear force Q, (3 =0, t = k k).
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Fig. 7. Stress couple M, (y = 0. 1 = k/k,).
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Fig. {1 Normal deflection W (r =0, v = kJk )
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Fig. 13. Rotation ¢, ( y = 0, 1 = ko /k,).

Fig. 14. Rotation ¢, {(x = 0, t = K Jk,).

CONCLUSIONS

In this paper, the governing equations of the shallow shell involving shear deformation
are decoupled and a set of equations for displacement functions are derived. Representations
of this form are very useful in the study of this kind of shells. The fundamental solutions
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of the shells are then obtained and the corresponding computational methods are discussed
in detail.

The boundary element analyses for the shallow shell involving shear deformation by
using the fundamental solution obtained have been completed (Lu, 1989) and will be given
in a subsequent paper.
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APPENDIX
The clements of differential operator matrix {R] are
Ry, = B(F\,D\+vFy Dy +(k +vk)F\ | Ry = BIvF\ D+ F,, D:+(k,+vk)F, ),
Ry = V1-v)B[F,D,+F,D,. R, =C[F,,D,+F,]. R, =C[F,,D,+F,}
R, = D(FyD,+vFyD,], Ry =DWF,D,+F,D:l. Ry =31-0D[F,Dy+FyD,] (j=12..5)

where D, and D, are given by (7), and F, by (18).

The elements of operator matrices [F] and [R] are defined as

D_d D“—d‘ ks
*Tapt T TE T,
2 I
k= wi+—wi k.=wi+ w;

ky = k(1 + 1+ )0+ 21 +v)wl], &, = ki[(1 =t +2v)wi +2(1 + Vw3t
ky =k [(1+vDol+Q+v—tw,wil. ks =k, [(z+v)wi+(2+v)1—eiw:]

Therefore,
k ky Kk, , 1 i ky oy
F..=;fD:—(—C—f+ja;)D:+k,(l—)+%)D:——Dfa:D;.
{ ‘ Jki , Na i ., 3 s pe
F,:=F1,=tu,a)=[—%':—t-;D:-#(E}j_—:'+(l—r)'é>0;’—ki(l—r)'(5+%>D:+ka(l—t)'uID;].

k .. C c .\l a k o s
P, =£, =—C-f|:D‘f—(a;+ I—))D;H- Ba;D;,‘ . Bl =F, =~biw,[D,,——a;D:].

k Y ky ky ki, o a; ke o,
E,=F = -Dim:[oj—a;o;], F,.= 3 " (?‘ + Ea.’) D:+k,<5 + E) D}~ 5 aiD;.

k C c .
FI) = F” = E—“[D;—(af‘* 5)03"’ —D—afD, .
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k
F:,:F‘:=%w.[0f:~—af0‘f]. F:,=F,1= >

1 ., C C,
Fi= —E[Dﬁ—(a;+ 5) Di+ BG;D:].

1 . 1 v s
F,u = F.u = "D'(Ul[D;—‘”D:L F;, = Fu = —sz[D,;-aIDj],

w:{Dt —a}D?),

I . . 1 1+v [+v .
Fi= 5["10:"(“?0’?+a2k()0:+ﬂ?020ﬂ- Fy=Fu= waw:[‘ GD:"' (f:a: "ai) D:]-

i v s s
E.= ‘E{k:D:“(“?WE““G:L':)D:‘F“?G:D:L

where a,. a, are given by (28), and w, and w, are given by (22).
The components of operator matrix {R] are
R, = Blw,F\, D, +ve, &y, D, +k (1 +vOF L.
y = B[vw,le,,-D,+<0;F=,~D,+k,(r+v)f",,},
R..u = %(‘—V)B{W:FI,*'UNF::]DW kli = C[w|F3,D,+P4;l.
Ry = Clo F\,D,+F,]. R, =Dlw F,+vw,E D,
Ry, = Dlvw, Fo+w:F]D,. Ry = Y(1=0Dlw:By+w Fy)D,. (j=1,2,....5)

0



